Module 1 Phylogeny: construction, visualization and interpretation

22 February 2021

Erkison Odih

Global Health Research Unit for Genomic Surveillance of Antimicrobial Resistance, Ibadan, Nigeria.

Outline

- Phylogeny inference from SNPs
- Phylogenetic tree construction
- Phylogenetic tree interpretation
- Phylogenetic tree visualization Microreact

Phylogeny

- Phylogeny represents the evolutionary relationships and relatedness between a group of organisms.
- Inferred from single nucleotide polymorphisms (SNPs)
- SNPs are allelic nucleotide variants at given positions in the genome.
- For phylogeny analyses, SNPs are assumed to be:
 - Independent
 - Random

- 1. Select reference and map reads to reference
 - The closer the reference to the sample data, the better.

2. Call SNPs / variant calling and filtering of low quality SNPs

Software: Samtools, VarScan, bcftools...

3. Filter recombination (optional)

- Remove SNPs due to recent recombination events e.g mobile elements
- Often identified by relative SNP densities (clustering) along the alignment

Software: Gubbins...

- 4. Concatenate filtered SNPs to create pseudogenomes and a pseudoalignment.
 - Constructed from only shared positions in all genomes and reference

5. Construct phylogenetic tree from pseudoalignment using chosen algorithm.

Phylogenetic tree interpretation

- Taxa are on the tree tips/leaves
- Nodes: hypothetical taxa ancestors
- Branches connect nodes and taxa
- **Topology:** branching structure of a tree
- Clade: taxa sharing a unique common ancestor
- **Bootstraps:** proportion of multiple replicate trees supporting each node.
- **Root:** distantly related to all taxa on the tree; tells direction of evolution

9

Phylogenetic tree interpretation

Reading phylogenetic trees

- Trees depict branching history; topology most important.
- Different orientations, same topology.
- Unless otherwise indicated, branch lengths are meaningless; avoid inferring temporal information that is not shown
- Branch lengths, when indicated, reflect the amount of evolutionary change as well as the passage of time.

Phylogenetic tree interpretation: Misconceptions

1. Evolutionary timeline flows from tips/leaves

Relationships are inferred from common ancestry, not leaf proximity

Phylogenetic tree interpretation: Misconceptions

3. Genetic change occurs only at nodes

Fact:

- Changes accumulate in taxa over time and are present along branches
- Nodes simply represent (hypothetical) common ancestors between taxa
- Shared ancestor; divergence event
- Unique ancestor

4. Related species have fewer connecting nodes

Phylogenetic tree visualisation: Microreact

- A flexible, interactive software/web application for easy visualization of datasets consisting of a combination of trees, maps, timelines, and associated metadata.
- Input:
 - Data file: Comma separated values (.csv) format; can contain a combination of textual metadata, locations and dates.
 - Optional tree file: Newick (.nwk) format.
- Output: interactive tree, map, timeline, and table.

Phylogenetic tree visualisation: Microreact Sample data file

	id	latitude	longitude	Country	Country_colour	Country_shape	Pedalism
	Bovine	46.227638	2.213749	France	Red	square	Four
	Gibbon	15.870032	100.992541	Thailand	Green	circle	Two
	Orangutan	-0.589724	101.3431058	Sumatra	Blue	circle	Two
	Gorilla	1.373333	32.290275	Uganda	#CC33FF	circle	Two
	Chimp	-0.228021	15.827659	Congo	Orange	circle	Two
	Human	55.378051	-3.435973	UK	#CCFF33	circle	Two
	Mouse	40.463667	-3.74922	Spain	#00FFFF	square	Four

https://microreact.org/instructions

Mandatory column

id – unique identifier for each data row

Optional columns

latitude, longitude – geographic columns
year, month, day – temporal columns
<custom-name> – other metadata
<column-name>__colour – specify colour
<custom-name> shape – specify shape

Phylogenetic tree visualisation: Microreact

Source: https://microreact.org/project/N1TRn11L

Microreact benefits

- Visualization can be shared as a permanent web link among collaborators.
- The web link can be embedded within publications to enable readers to explore and download the data.
- Provides a simple, yet powerful, visualization method that aids research and discovery and facilitates the open sharing of datasets.

Thank you

NOGUCHI MEMORIAL INSTITUTE FOR MEDICAL RESEARCH UNIVERSITY OF GHANA, LEGON

This programme is being funded by the UK Department of Health and Social Care. The views expressed do not necessarily reflect the UK Government's official policies.

