

Benchmarking of de novo assembly tools: SPAdes 3.9 vs Velvet 1.2

Report number	#1			
Responsible	Pimlapas Leekitcharoenphon (DTU) and Maria Borowiak (BfR)			
Other partners/institutions involved	-			
Benchmarking launched (date)	May 2016			
Deliverable due (date)	Due: May 2016 Delivered: August 2016			

Purpose of the benchmarking exercise

The purpose of this benchmarking exercise was to evaluate and compare the performance of the mostly used *de novo* assembly tool, i.e. Velvet, and the newer introduced *de novo* assembly tool, SPAdes.

Tools included in the benchmarking exercise

De novo assembly tools; Velvet 1.2 with default parameters (Assembler-1.2 implemented in the tool Bacterial Analysis Pipeline - Batch Upload (https://cge.cbs.dtu.dk/services/cge/)) and SPAdes 3.9 (http://cab.spbu.ru/software/spades/) with default parameters in careful mode. Both tools were run using different k-mer sizes and the assembled genome was set to pick up from the best k-mer size.

Species and/or genomes included

50 *Salmonella enterica* subsp. *enterica* serovar Paratyphi B dTa+ (S. Java) isolates were tested. DNA from bacterial cells was isolated from liquid cultures using the PureLink® Genomic DNA Mini Kit (Invitrogen, Carlsbad, CA, USA). Sequencing libraries were prepared with the Nextera XT DNA Sample Preparation Kit (Illumina, San Diego, CA, USA) according to the manufacturer's protocol. Paired-end sequencing was performed in 2×300 cycles on the Illumina MiSeq benchtop using the MiSeq Reagent v3 600-cycle Kit (Illumina). Further details related to the included genomes can be found at the end of this report and in Supplementary Table 2 (Annex B).

Results

Overall assembly quality

Sequencing raw data without trimming was assembled using either Velvet or SPAdes assembly tools. Analysis of contigs using ContigAnalyzer-1.0, implemented in the Bacterial Analysis Pipeline - Batch Upload (<u>https://cge.cbs.dtu.dk/services/cge/</u>), revealed that the mean number of contigs is lower and the mean N50 value (median contig size of a genomic assembly) is higher in the genomes assembled using SPAdes (see Table 1 and Figure 1). The observed mean genome size however is similar for both assembly types.

		Spades	Velvet	
	mean	100	249	
Contig number	min	51	144	
	max	181	376	
	sd	30	55	
N50	mean	176,144	57,148	
	min	53,662	26,926	
	max	393,606	146,576	
	sd	93,110	23,786	
Assembled genome size	mean	4,924,464	4,872,591	
	min	4,663,179	4,505,678	
	max	5,076,872	5,027,353	
	sd	101,043	121,670	

Table 1: Assembly quality analysed using ContigAnalyzer-1.0

To further assess the quality of the assemblies, the Multi Locus Sequence Type (MLST) and antibiotic resistance genes were analysed.

Results regarding MLST identification

Analysis of the obtained assemblies regarding the Multi Locus Sequence Type (MLST) was performed using the tool MLST 1.6 (https://cge.cbs.dtu.dk/services/cge/). MLST types (based on the Enterobase scheme, https://enterobase.warwick.ac.uk) could be predicted in 100% of the SPAdes assembled and in 94% of the Velvet assembled genomes.

Results regarding the identification of resistance genes

Antimicrobial resistance patterns derived from MIC values (obtained by broth microdilution method following CLSI guidelines, and using the EUCAST epidemiological ECOFFs; testing conditions applied to the individual samples depend on the year the isolate was collected and are listed in Supplementary Table 2 (Annex B)) were compared with the ResFinder2.1 (https://cge.cbs.dtu.dk/services/cge/) output (AMR genes detected) for *de novo* assembled sequence data (see Supplementary Table 2 (Annex B)).

Concordance between genotypic and phenotypic resistance data (for detailed results see also Supplementary Table 2 (Annex B)):

- In 35/50 cases the phenotypic resistance profile could be explained with genes found using Velvet as assembler.
- In 38/50 cases the phenotypic resistance profile could be explained with genes found using SPAdes as assembler.
- In 12/50 cases the phenotypic resistance profile could not be explained with genes found using either SPAdes or Velvet for assembly, one or more genotypic resistance determinants were missing.

- In 5/50 cases resistance genes conferring resistance to aminoglycosides which were not expected based on phenotypic resistance data were found in both genome assemblies.
- In 7/50 cases additional resistance genes which were not expected based on the phenotypic resistance profiles were found in the genomes assembled using SPAdes. This involves *aac(3)*-VIa-like genes (6 cases) and *erm(B)* (1 case).

Conclusions

All in all, SPAdes assembled genomes showed longer contigs and therefore higher N50 values. This seems to lead to an improved detection of MLST genes. Moreover, "missing" resistance genes, i.e. those absent from genomes assembled using Velvet, could be identified when using SPAdes for genome assembly. Nevertheless, there is a huge number of cases where not all expected genetic resistance determinants were identified. This can be caused by loss of resistance plasmid during storage and culturing or emergence of unknown resistance mechanisms and chromosomal point mutations which could not be identified using the ResFinder2.1 tool. Additional identification of streptomycin resistance determinants, which were not expected based on phenotypic data, are likely to be caused by incorrectly determined MIC values or changes regarding break points and test panels. For better comparison of the data, isolates with contradicting phenotypical and genotypical results should be subjected to MIC retesting. In case of the aac(3)-VIa-like genes and the erm(B) that were detected in 7 SPAdes assembled genomes, further analysis of the respective contigs revealed that all of them showed a low coverage. These contigs might have been derived from the assembly of low level read contaminations from other samples which might have led to the false positive detection of genotypic resistance determinants. Including low coverage contigs caused by read contamination in the assembled genomes might be a disadvantage of SPAdes. Additional filters should be applied to remove low coverage contigs.

Figure 1: Overall assembly quality. Graphical representation of overall assembly quality parameters including contig numbers, N50 values and genome sizes of genomes assembled with either SPAdes or Velvet.

Supplementary Table - List of Strains (see also Supplementary Table 2 (Annex B)).

	Spades			Velvet			
sample name	genome_size	contigs	n50	genome_size	contigs	n50	
03-02917	4674923	150	70852	4505678	360	26926	
06-02242	4762839	157	88213	4633625	335	30290	
07-01597	4663179	64	225719	4577464	213	51461	
08-00436	4896492	118	119248	4797832	314	35933	
08-00436	4967144	79	247068	4940435	222	85291	
08-00844	4970846	91	213767	4941452	230	58722	
08-00955	4965087	100	155361	4876611	278	43853	
08-03422	4955841	120	137558	4876128	293	44300	
09-02362	4871450	88	174043	4804866	227	53647	
09-02946	5034312	91	225719	5027353	200	85169	
09-02986	4954613	146	103875	4844786	337	30225	
09-03610	4926660	97	164864	4918582	205	74734	
09-04431	4962053	88	187927	4919965	239	51201	
10-03145	4915801	181	53662	4754476	354	31818	
10-03460	4818113	63	368622	4788341	346	34646	
10-04072	4913494	122	82860	4833220	270	46531	
10-04072	4909537	81	165445	4883184	192	76987	
10-05043	4991716	172	68232	4888669	376	30963	
11-01176	4782703	113	124638	4720850	271	44563	
11-01525	4972448	92	184458	4962843	183	103705	
11-02165	4966007	86	166565	4907581	242	44379	
11-03654	5012273	83	173228	4986940	224	54113	
11-03655	5011129	72	393606	4969447	222	56233	
11-03656	5013701	86	206171	4995442	189	96509	
11-04054	4897942	140	77220	4859167	290	40921	
11-04056	4912808	90	165788	4873888	238	62293	
11-04559	5014967	69	368674	5007664	144	146576	
12-00555	5007211	115	94646	4855916	287	41914	
12-01208	5016473	93	157181	4958028	248	48398	
12-02541	4707937	128	93229	4634546	285	37900	
12-02857	4774719	124	96314	4678889	302	35324	
13-SA02194	4970145	75	385587	4943543	167	90284	
13-SA02281	5008432	120	96736	4968954	303	38101	
13-SA02283	4983075	68	253523	4968764	199	74230	
13-SA02300	4986840	98	147698	4964091	248	46308	
13-SA02435	4982663	104	121634	4949929	236	53586	
13-SA02656	5076872	124	100656	5021983	285	45019	
13-SA02788	4967735	80	192581	4948003	216	56954	
14-SA00333	5010528	62	231654	4995680	210	83814	
14-SA00775	4813906	109	103703	4772262	248	38773	
14-SA00777	4987252	95	134015	4950980	259	51549	
14-SA00918	4964052	96	121174	4914842	252	44954	
14-SA01149	5013356	60	368866	4999641	185	93083	
14-SA02536	5014878	69	275055	4998872	200	79253	
14-SA02741	5009213	122	128575	4941385	287	47436	
14-SA02860	4993807	116	131105	4961677	234	52422	
15-SA00146	4776301	136	62450	4722696	267	35590	
15-SA01434	4807642	67	172824	4795487	174	79619	
15-SA01523	4805362	51	392833	4797115	175	82555	
15-SA02829	4806710	64	231776	4789754	213	58324	