

Characterisation of three NDM-5 *E. coli* isolates from meat, Hungary Jette Kjeldgaard & Mirena Ivanova 18th EURL-AR Workshop 2024

Areas of concern – emergence of resistance - CPE

Increase in reported E. coli carbapenemase producers

			Carbapenem resistance]
Country	Sample	MLST	gene	Plasmid replicon gene	
				IncY, IncR, IncX3, IncX3, IncFIB(K),	chromosome
Czechia	21_P_BA_4003_4_K	898	blaNDM-5	IncFIB	(IS30 and IS5)
Czechia	21_P_BA_225_3_K	10	blaNDM-5	IncX3, IncR	(
Hungary	M2021_10044802_2_E	405	blaNDM-5	p0111, IncFIB, IncX4	
Hungary	M2021_10043982_E	405	blaNDM-5	p0111, IncFIB, IncX4	
Hungary	M2021_10044824_1_E	405	blaNDM-5	p0111, IncFIB, IncX4]
Italy	21112463I110X6	5229	blaOXA-181	IncFIB, IncX4, IncI1, IncFIA	rep_cluster_1195
Italy	21094270C326X6	5229	blaOXA-181	IncX3, IncFIB, IncFIC	
Italy	21098725F502X6	617	blaNDM-5	IncFIA, IncFIB, IncX4, IncI-alpha]
Italy	21102457L202X6	38	blaOXA-48	-] chromosome (IS10A)

PlasmidFinder & Mob-suite: Tool for clustering and reconstruction of plasmids from draft assemblies.

2

Title

EFSA reported CPE

Year 💌	Country 🔽	Matrix 💌	Gene Family 🔻	Gene 🔻	Number of isolates
2015	Germany	Fatenning pigs	VIM	bla _{VIM-1}	1
2016	Romania	Broilers	OXA	<i>bla</i> _{OXA-162}	2
		Broiler meat	OXA	bla _{OXA-162}	1
2017	Germany	Fatenning pigs	VIM	bla _{VIM-1}	1
2018	-	-	-	-	No isolates detected
2019		Pig meat	VIM	bla _{VIM-1}	1
	Germany	Fatenning pigs	OXA	bla _{OXA -48}	1
			GES	bla _{GES-5}	1
2020	Austria	Broilers	VIM	bla _{VIM-1}	1
	Hungary	Bovine meat	NDM	bla _{NDM-5}	1
		Pig meat	NDM	bla _{NDM-5}	2
2021	Spain	Fatenning pigs	OXA	bla _{OXA-48}	2
	Czechia	Fatenning pigs	NDM	bla _{NDM-5}	3
	Italy	Fatenning pigs	OXA	bla _{OXA -48}	1
			OXA	bla _{OXA-181}	20
		bovine animals < 1 year of age	NDM	bla _{NDM-5}	1
			OXA	<i>bla</i> _{OXA -181}	4
2022	Austria	Broilers	VIM	bla _{VIM-1}	2
	Italy	Broilers	VIM	bla _{VIM-1}	1
		Fattening turkeys	OXA	bla _{OXA-181}	2

Title

Epidemiological follow up and trace-back

Epidemiological Investigation: Case1

The hazard of carbapenemase (OXA-181)producing *Escherichia coli* spreading in pig and veal calf holdings in Italy in the genomics era: Risk of spill over and spill back between humans and animals

Fattening pig

Emergence of carbapenemase producing *E. coli* Three isolates from Hungary

- Three multidrug resistant bla_{NDM-5}-harbouring Escherichia coli ST405 isolates were recovered from beef and pork collected at retail in Hungary, 2021
- Same ST 405 know from human clinical cases
- Identical AMR and plasmid profile
- Initial analysis showed clonality, but no relation to NDM-5 producers from Czechia or Italy
- Clonality confirmed by both SNP analysis and cgMLST
 - Comparative analysis confirmed that isolates were clonally related (up to 2 SNPs)
 - Identical hierarchical clustering of cgMLST (HierCC) within Enterobase
 - belonging to the same HC2-172694 group

E. coli ST 405

- ST405 is a recognised human uropathogenic ST
 - Increasingly associated with multidrug resistance and virulence
- Comparison showed the most similar genomes available in Enterobase (same HC2)
 - isolate of human origin from Australia
 - two other isolates of unknown origin from the UK
- AMR genotypes were concordant with their phenotypes and included:
 - bla_{NDM-5}, bla_{CTX-M-15}, bla_{TEM-1}
 - sul1, dfrA12, qepA4, tet(B), mph(A)
 - point mutations in gyrA and parCE genes,

Emergence of carbapenemase producing *E. coli* -Three isolates from Hungary

- MinION sequencing in addition to Illumina for hybrid assembly of plasmid
- *bla*_{NDM-5} was located on a <u>IncFIB-IncFII hybrid plasmid</u>
 - closely related to a plasmids from clinical *E. coli* isolated in USA (among others)
 - only bla_{CTX-M-15}-ISEcp1 transposition unit was absent
- Additional promoters or mutations indicate increased expression of both *bla*_{CTX-M-15} and *bla*_{NDM-5}
- IncFII-IncFIB plasmids contained the tra and trb gene clusters required for conjugal transfer
 - conjugation experiments showed transfer of bla_{NDM-5} was transferred along with the IncX4 plasmid to the recipient *E. coli* K12
 - transconjugants exhibited antimicrobial susceptibility profiles in concordance with the genetic content

IncFIB-IncFII hybrid plasmid contains numerous resistance genes:

GC content

GC skew(-) GC skew(+

unnamed 100% identity 70% identit

50% identity pKY1497_1

100% identity 70% identity

50% identity

pFUJ80154-1

100% identity

70% identity

50% identity

pS253-NDM5

100% identit

70% identit

50% identity

100% identit 70% identity

50% identity

100% identity

70% identity

50% identity

р]]1887-5

GC skew

- bla_{NDM-5}, bla_{CTX-M-15}, bla_{TEM-1} - sul1, dfrA12, qepA4, tet(B), mph(A), aadA2
- Increased risk of co-selection and of the plasmid being maintained by selective pCO Eco4457-3 pressure
 - genetic context of *bla*_{NDM-5} is highly conserved
 - Seen in IncF-type and IncX3 plasmids, indicating capacity for dissemination

Draft figure

Α

Comparison with related plasmids from clinical cases in USA, Germany, Japan and New Zealand

Comments

- The human-associated *bla*_{NDM-5}-carrying *E. coli* in meat is of a great concern
 - contribute to the transmission of carbapenemase-producing bacteria to humans via food-producing environments or foods
- Multidrug resistance gene package on plasmid is of great concern
- The findings of three clonally related *E. coli* in different types of retail meat indicate human contamination in slaughterhouse/retail level
- Emerging resistance to carbapenems is seen in the primary production of animals in several European countries, but also transmission on retail and slaughterhouse level should be considered

Acknowledments:

DTU:

Mirena Ivanova, Judit Szarvas, Elif S. Tosun, Niamh Lacy-Roberts, Natasia Rebekka Thornval, Rene S. Hendriksen Joana Mourão

Hungary NRL: Zita Záborcki, Szilárd Jánosi,

EFSA:

Raquel Garcia-Fierro, Beatriz Guerra, Pierre-Alexandre Beloeil, Ernesto Liebana

Questions or comments?